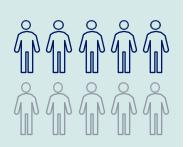
Management of PAD in Diabetes: Focus on prevention of Amputation and CV events

Ajay Chaudhuri, MBBS, MRCP (UK)
Chief of Endocrinology
Clinical Professor, Department of Medicine
Program Director, Endocrinology Fellowship
Director, Kaleida's Diabetes & Endocrinology
Center of WNY

Objectives

- Discuss the association between diabetes, peripheral arterial disease and CVD
- Discuss the evidence behind the ADA guidelines for prevention and management of PAD in diabetes
- Discuss the ABC of diabetes care to prevent and manage PAD in diabetes
- Discuss findings of a recent trial of Semaglutide in subjects with Diabetes and symptomatic PAD
- Discuss the non glycemic effects of GLP-1 agonists from UB endocrine department

Association Between Diabetes, PAD and CVD



Prevalence of PAD is higher in people with T2D than in those without

The prevalence of PAD is up to twice as high in people with diabetes as in the general population, and the prevalence of concomitant PAD in people with diabetes is over 50% 1,2

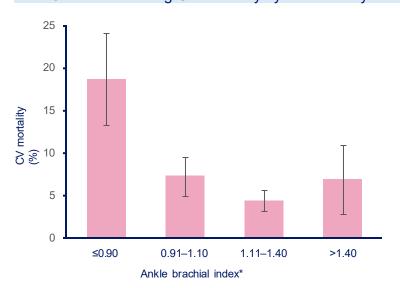
Glucose intolerance is associated with a >20% prevalence of an abnormal ankle brachial index* relative to 7% in those with normal glucose tolerance²

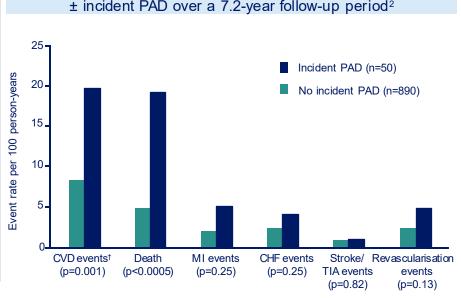
Approximately 50–70% of people with chronic limb-threatening ischemia have diabetes³

50-70%

^{1.} Soyoye DO et al. World J Diabetes 2021;12:827–38; 2. Thiruvoipati T et al. World J Diabetes 2015;6:961–69; 3. Marx N et al. Eur Heart J 2023:44:4043–140.

Diabetic Amputations


- Diabetes is the # 1 cause of nontraumatic lower extremity amputations in the U.S.
- 15- to 40-fold increase in risk compared with nondiabetic population
- 67,000 limbs lost per year–184 per day
- ADA and CDC: limb loss is preventable


American Diabetes Association. *Diabetes Facts and Figures*. March 2000, Online Edition. Centers for Disease Control and Prevention. *National Diabetes Fact Sheet*. 1998.

People with PAD have a higher risk of CV events vs those without PAD

Meta-analysis of male participants (N=24,955) from 16 studies showing CV mortality by PAD severity¹

Prospective cohort study of people with stable CAD ± incident PAD over a 7.2-year follow-up period²

PAD, peripheral artery disease; CV, Cardiovascular; *Ankle brachial index is a diagnostic tool for PAD where a lower value indicates a more severe disease state. Error bars represent 95% confidence intervals.

'The primary outcome (CVD events) included a composite of events: death, MI, CHF, stroke, TIA and coronary revascularisation. Secondary outcomes included those events assessed individually.

CAD, coronary artery disease; CHF, congestive heart failure; CV, cardiovascular; CVD, cardiovascular disease; MI, myocardial infarction; PAD, peripheral arterial disease; TIA, transient ischaemic attack.

1. Ankle Brachial Index Collaboration. JAMA 2008;300:197–208; 2. Grenon SM et al. Vasc Med 2013;18:176–84.

ADA STANDARDS OF MEDICAL CARE IN DIABETES - 2024

Peripheral Artery Disease (PAD)

ADA recommends screening for asymptomatic PAD using ankle brachial index in people with diabetes at high risk for PAD, including any of the following:

age ≥ 50 years

diabetes with duration ≥ 10 years

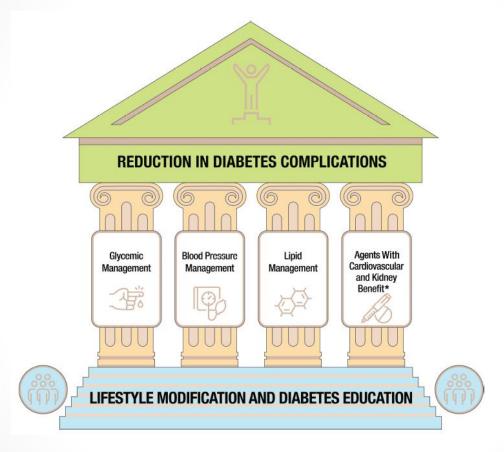
comorbid microvascular disease

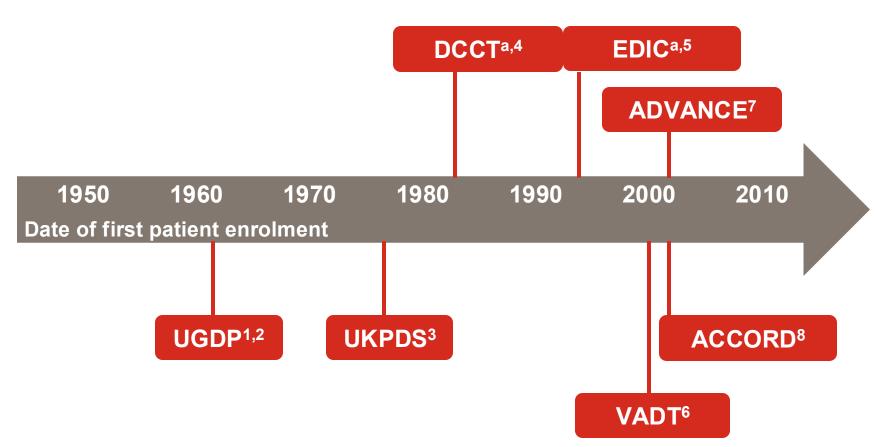
clinical evidence of foot complications

or any end-organ damage from diabetes.

Initial screening for PAD should include:

- Assessment of lower-extremity pulses, capillary refill time
- Rubor on dependency
- Pallor on elevation, and venous filling time
- Individuals with a history of leg fatigue, claudication, and rest pain relieved with dependency or decreased or absent pedal pulses should be referred for anklebrachial index with toe pressures and for further vascular assessment as appropriate


Evidence for the ADA guidelines to prevent and manage PAD in diabetes


CARDIOVASCULAR DISEASE AND RISK MANAGEMENT

Cardiovascular Disease and Risk Management: Standards of Care in Diabetes - 2024. Diabetes Care 2024;47(Suppl. 1):S179-S218

Major Historic CV Outcomes Trials: Intensive vs. Conventional Glycemic Control

^aDCCT/EDIC study included patients with T1DM; all other studies included patients with T2DM

- 1. Meinert et al. *Diabetes* 1970;19(Suppl):789-830
- 2. Schwartz TB and Meinert CL. Perspect Biol Med 2004;47(4):564-74
- 3. UKPDS Group. *Lancet* 1998;352:837-53 (updated 354:602)
- 4. DCCT Research Group. N Engl J Med 1993;329:977-86
- EDIC. Diabetes Care 1999;22:99-111

- 6. Duckworth et al. N Engl J Med 2009;360:129-39
- 7. ADVANCE Collaborative Group. *N Engl J Med* 2008;358:2560-72
- 8. ACCORD. N Engl J Med 2008;358:2545-59

Benefits of Glycemic Control: Preventing Complications

UKPDS: Benefits of 1% HbA_{1c} Reduction on Risk of Complications

	Decrease in Risk per 1% HbA _{1c} Reduction	P Value
Stroke	12%	0.035
All-Cause Mortality	14%	<0.0001
MI	14%	<0.0001
Heart Failure	16%	0.021
Cataract Extraction	19%	< 0.0001
Any Diabetes-related Endpoint	21%	<0.0001
Diabetes-related Death	21%	<0.0001
Microvascular Endpoints	37%	<0.0001
Amputation or Death From Peripheral Vascular Disease	43%	<0.0001

Stratton IM et al. *BMJ* 2000;321:405-411.

Cholesterol lowering

Statins and Major Adverse Limb Events in Patients with Peripheral Artery Disease: A Systematic Review and Meta-Analysis

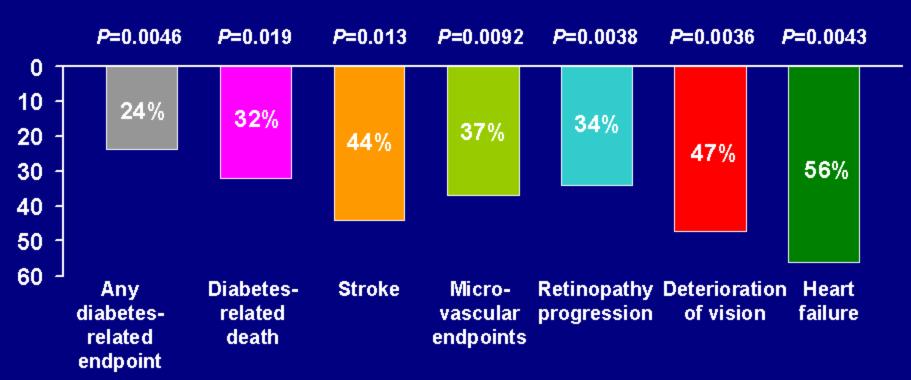

Hazard Ratios Chart

OUTCOME	HAZARD RATIO (HR)	95% CONFIDENCE INTERVAL (CI)
MALE	0.702	0.605–0.815
Amputations	0.654	0.522–0.819
All-cause Mortality	0.608	0.543-0.680
CV Death	0.594	0.455–0.777
Composite CV Endpoints	0.662	0.591–0.741
Ischemic Stroke	0.718	0.620–0.831

Pastori D, Farcomeni A, Milanese A, Del Sole F, Menichelli D, Hiatt WR, Violi F. Statins and Major Adverse Limb Events in Patients with Peripheral Artery Disease: A Systematic Review and Meta-Analysis.

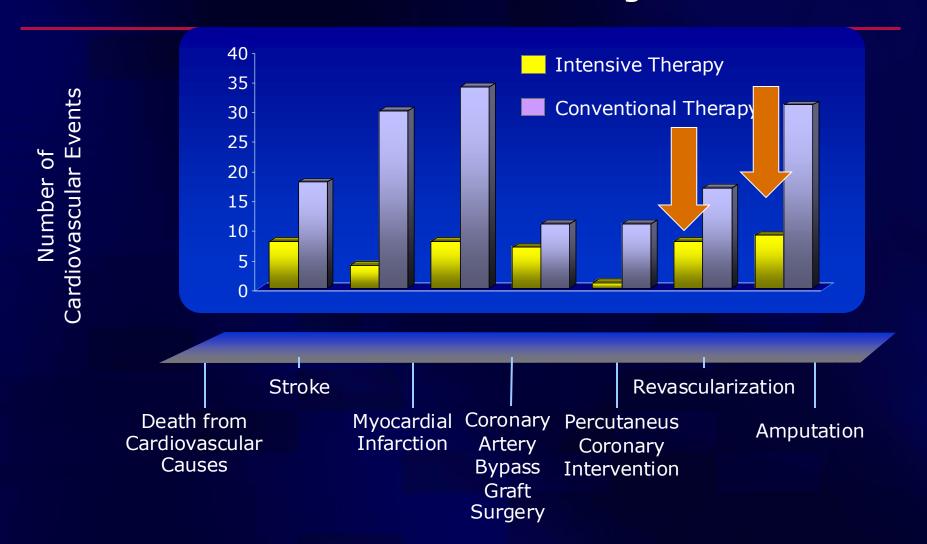
Thrombosis and Haemostasis. 2020;120(5):866–875.

DOI: 10.1055/s-0040-1709711



UKPDS Results: Tight BP Control

Risk Reduction*



^{*}Compared with less tight control. Captopril and atenolol were equally effective in reducing risk and were equally safe in patients with diabetes.

STENO-2: Reduction in Cardiovascular Disease Through a Multifactorial Intervention in Patients Who Have Type 2 Diabetes and Microalbuminuria

Intensive Treatment Goals: hemoglobin A_{1c} <6.5%; cholesterol, <175 mg/dL; triglycerides, <150 mg/dL; systolic blood pressure, <130 mm Hg; diastolic blood pressure, <80 mm Hg.

STENO-2: No Other Clinical Trial of Patients With Type 2 Diabetes Has Shown Such a Dramatic Reduction in Cardiovascular Events With a Pharmacologic Intervention

ABC OF DIABETES CARE

A A1C <7%

B Blood pressure

130/80

140/90

C Cholesterol

statins/ezetimibe icosapent ethyl PCS K9 inhibitor

CARDIOVASCULAR DISEASE AND RISK MANAGEMENT

Statin Treatment—Primary Prevention

- 10.18 For people with diabetes aged 40–75 years without ASCVD, use moderate-intensity statin therapy in addition to lifestyle therapy. **A**
- 10.19 For people with diabetes aged 20–39 years with additional ASCVD risk factors, it may be reasonable to initiate statin therapy in addition to lifestyle therapy. **C**
- For people with diabetes aged 40–75 years at higher cardiovascular risk, including those with one or more ASCVD risk factors, it is recommended to use high-intensity statin therapy to reduce LDL cholesterol by ≥50% of baseline and to target an LDL cholesterol goal of <70 mg/dL (<1.8 mmol/L). A
- 10.21 For people with diabetes aged 40–75 years at higher cardiovascular risk, especially those with multiple ASCVD risk factors and an LDL cholesterol ≥ 70 mg/dL (≥ 1.8 mmol/L), it may be reasonable to add ezetimibe or a PCSK9 inhibitor to maximum tolerated statin therapy. **B**

Statin Treatment—Secondary Prevention

- 10.26 For people of all ages with diabetes and ASCVD, high-intensity statin therapy should be added to lifestyle therapy. **A**
- For people with diabetes and ASCVD, treatment with high-intensity statin therapy is recommended to target an LDL cholesterol reduction of ≥50% from baseline and an LDL cholesterol goal of <55 mg/dL (<1.4 mmol/L). Addition of ezetimibe or a PCSK9 inhibitor with proven benefit in this population is recommended if this goal is not achieved on maximum tolerated statin therapy. B
- 10.28a For individuals who do not tolerate the intended statin intensity, the maximum tolerated statin dose should be used. **E**
- 10.28b For people with diabetes and ASCVD intolerant to statin therapy, PCSK9 inhibitor therapy with monoclonal antibody treatment, A bempedoic acid therapy, A or PCSK9 inhibitor therapy with inclisiran siRNA E should be considered as an alternative cholesterol-lowering therapy.

CARDIOVASCULAR DISEASE AND RISK MANAGEMENT

Antiplatelet Agents (continued)

10.36 Combination therapy with aspirin plus low-dose rivaroxaban should be considered for individuals with stable coronary and/or peripheral artery disease (PAD) and low bleeding risk to prevent major adverse limb and cardiovascular events. A

10.37 Aspirin therapy (75–162 mg/day) may be considered as a primary prevention strategy in those with diabetes who are at increased cardiovascular risk, after a comprehensive discussion with the individual on the benefits versus the increased risk of bleeding. A

Diabetes Endocrinology Center of Western New York Outcomes

Outcomes of patients from Diabetes Endocrinology Center of WNY

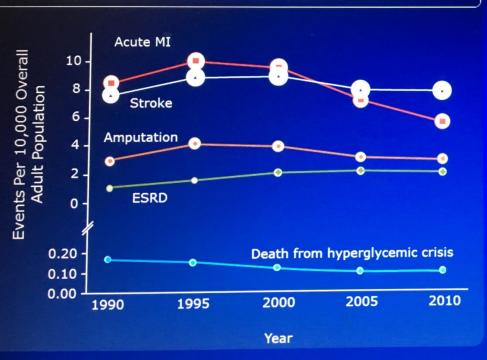
- Mean Hba1c: 6.8%
- Mean LDL-C: 75mg/dl
- Mean HDL-C: males: 38mg/dl; females: 45mg/dl
- Mean Systolic BP: 125mm Hg
- Mean Diastolic BP: 78mm Hg
- 85% on statins
- 90% on ACE inhibitors/ARBs
- 85% on aspirin
- 65% on insulin

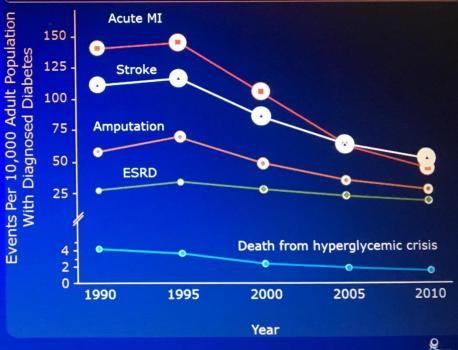
Clinical Outcomes of patients from Diabetes Endocrinology Center of WNY

- No foot ulcers, gangrene or amputations for 11 years
- No endstage renal failure, dialysis or transplantation for 7 years
- Mean microalbuminuria diminished
- Cessation of laser therapy within two years of attending

Rationale for the 2025 ADA guidelines for using GLP-1 agonists and SGLT2 inhibitors in ASCVD

Evidence for the guidelines





Diabetes-Related Complications Have Declined, but Considerable Residual Risk Remains

Population with or without diabetes

Population with diabetes

ESRD=end-stage renal disease; MI=myocardial infarction. Gregg EW et al. N Engl J Med. 2014;370(16):1514-1523.

NO

INDICATORS OF HIGH-RISK OR ESTABLISHED ASCVD, CKD, OR HFT

CONSIDER INDEPENDENTLY OF BASELINE A1C OR INDIVIDUALIZED A1C TARGET

V

- Established ASCVD
- Indicators of high ASCVD risk (age ≥55 years with coronary, carotid or lower extremity artery stenosis >50%, or LVH)

ASCVD PREDOMINATES

PREFERABLY

GLP-1 RA with proven CVD benefit¹

SGLT2i with proven CVD benefit¹ if eGFR adequate²

If A1C above target

If further intensification is required or patient is now unable to tolerate GLP-1 RA and/or SGLT2I, choose agents demonstrating CV safety:

- For patients on a GLP-1 RA, consider adding SGLT2i with proven CVD benefit¹
- DPP-4i if not on GLP-1 RA
- Basal insulin⁴
- TZD⁵
- · SU⁶

HF OR CKD PREDOMINATES

- Particularly HFrEF (LVEF <45%)
- CKD: Specifically eGFR 30-60 mL/min/1.73 m² or UACR >30 mg/g, particularly UACR >300 mg/g

PREFERABLY

SGLT2i with evidence of reducing HF and/or CKD progression in CVOTs if eGFR adequate³

if SGLT2i not tolerated or contraindicated or if eGFR less than adequate² add GLP-1 RA with proven CVD benefit¹

If A1C above target

- Avoid TZD in the setting of HF Choose agents demonstrating CV safety:
- For patients on a SGLT2i, consider adding GLP-1 RA with proven CVD benefit¹
- DPP-4i (not saxagliptin) in the setting of HF (if not on GLP-1 RA)
- Basal insulin⁴
- · SU⁶
- 1. Proven CVD benefit means it has label indication of reducing CVD events
- Be aware that SGLT2l labelling varies by region and individual agent with regard to indicated level of eGFR for initiation and continued use
- Empagifflozin, canagifflozin and dapagiiflozin have shown reduction in HF and to reduce CKD progression in CVOTs. Canagifflozin has primary renal outcome data from CREDENCE. Dapagifflozen has primary heart failure outcome data from DAPA-HF
- 4. Degludec or U100 glargine have demonstrated CVD safety
- 5. Low dose may be better tolerated though less well studied for CVD effects

† Actioned whenever these become new clinical considerations regardless of background gluo

IF A1C ABOVE INDIVIDUALIZED TARGET PROCEED AS BELOW

Glucoselowering Medication in Type 2 Diabetes: Overall Approach

THERAPEUTIC INERTIA

REASSESS AND

MODIFY TREATMENT

REGULARLY

Pharmacologic
Approaches to
Glycemic
Management:
Standards of Medical
Care in Diabetes 2020. Diabetes Care
2020;43(Suppl.
1):S98-S110

Connected for Life

In 2008, the FDA Released Guidelines for the Development of Therapies to Treat Type 2 Diabetes

Nissen and Wolski 2007 meta-analysis on adverse CV effects of rosiglitazone¹

Alarm over approval and near approval of antidiabetic drugs associated with CV events^{2,3}

Lack of clear-cut evidence of macrovascular risk reduction with any antidiabetic drug or regimen⁴

Industry should demonstrate that new therapies will not result in an unacceptable increase in CV risk

Guidance for Industry

Diabetes Mellitus — Evaluating Cardiovascular Risk in New Antidiabetic Therapies to Treat Type 2 Diabetes

> U.S. Department of Health and Haman Services Food and Drug Administration Center for Drug Evaluation and Research (CDER)

> > December 2008 Clinical Medical

=cardiovascular; FDA=US Food and Drug Administration.

Nissen SE, Wolski K. New Engl J Med. 2007;356(24):2457-2471. 2. Menon V, Lincoff AM. Circulation. 2014;129(25):2705-2713. 3. Hirshberg B, Raz I. Diabetes Care. 2011;34(suppl 2):S101-06. 4. Parks MH. http://www.fda.gov/downloads/Drugs/NewsEvents/UCM209087.pdf. Accessed October 31, 2016.

Study Design for Diabetes Efficacy Trials vs Diabetes CVOTs

Aim: Diabetes Efficacy

Initiation of treatment vs comparator (eg, experimental agent vs active comparator)

Treatment administered per random assignment

Aim: Demonstrate CV Safety and/or Benefit

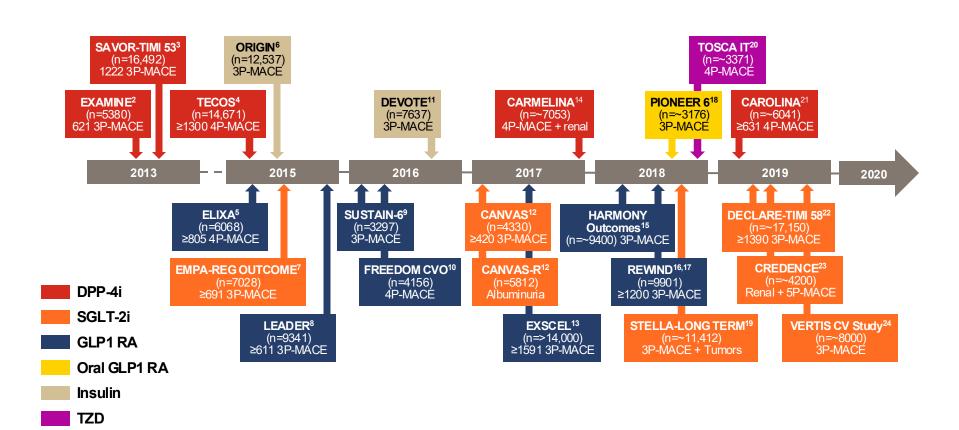
Initiation of treatment vs comparator (eg, experimental agent vs placebo, both with standard-of-care)

Treatment adjustment to achieve similar A1C

Differentiation in biomarkers

between treatment arms

Observe differences in **glycemia and other parameters**^a between experimental agent and comparator Common glycemic target between treatment arms


Observe differences in **CV outcomes (such as composite MACE)** between experimental agent and comparator

A1C=glycated hemoglobin; FPG=fasting plasma glucose.

³Other parameters include hypoglycemic risk, weight gain, blood pressure, lipid profile, β-cell function, and insulin sensitivity. John M et al. *Indian Heart J.* 2016;68(4):564-571.

Overview of CVOTs of Glucose-lowering Drugs¹ (1 of 2)

Timings represent estimated completion dates as per ClinicalTrials.gov

- 1. Johansen OE. 2015
- 2. White WB et al. 2013
- 3. Scirica BM et al. 2013
- 4. Green JB et al. 2015
- Pfeffer MA et al. 2015
- 6. ORIGIN. 2012
- 7. Zinman B et al. 2015
- 7. Zinman B et al. 2015
- Marso SP et al. 2016
 Marso SP et al. 2016
- 10. NCT01455896

- 11. Marso SP et al. 2017
- 12. Neal B et al. 2017
- 13. NCT01144338
- 14. NCT01897532
- 15. NCT02465515

- 16. NCT02065791
- 17. Gerstein HC et al. 2017
- 18. NCT02692716
- 19. NCT02479399 20. NCT00700856
- 22. NCT01730534
- 23. NCT01394952

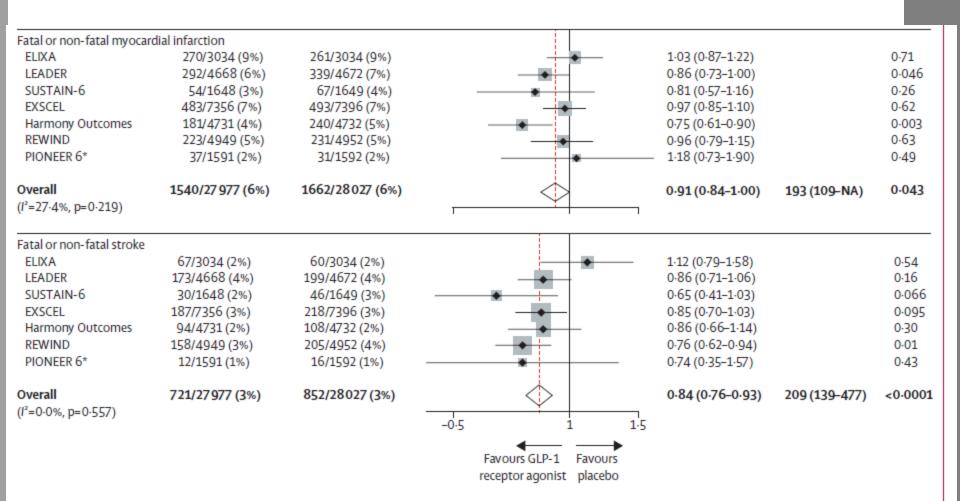
NCT01243424

24. NCT01986881

Meta-analysis of GLP-1 agonist trials

Lancet Diabetes Endocrinol 2019; 7: 776–85

MACE AND CV DEATH: REDUCTION BY 12%


	GLP-1 receptor agonist n/N (%)	Placebo n/N (%)		Hazard ratio (95% CI)	NNT (95% CI)	p value
	-5	1414 (70)	 	(33% CI)	(33% CI)	
Three-component MACE						
ELIXA	400/3034 (13%)	392/3034 (13%)	•	1.02 (0.89-1.17)		0.78
LEADER	608/4668 (13%)	694/4672 (15%)		0.87 (0.78-0.97)		0.015
SUSTAIN-6	108/1648 (7%)	146/1649 (9%)		0.74 (0.58-0.95)		0.016
EXSCEL	839/7356 (11%)	905/7396 (12%)		0.91 (0.83-1.00)		0.061
Harmony Outcomes	338/4731 (7%)	428/4732 (9%)	-	0.78 (0.68-0.90)		<0.0001
REWIND	594/4949 (12%)	663/4952 (13%)	-	0.88 (0.79-0.99)		0.026
PIONEER 6	61/1591 (4%)	76/1592 (5%)	-	0.79 (0.57-1.11)		0-17
Overall	2948/27977 (11%)	3304/28027 (12%)		0.88 (0.82-0.94)	75 (50-151)	<0.0001
(I ² =40.9%, p=0.118)	, ,	, ,	<u> </u>	,		
Cardiovascular death						
ELIXA	156/3034 (5%)	158/3034 (5%)	•	0.98 (0.78-1.22)		0.85
LEADER	219/4668 (5%)	278/4672 (6%)	•	0.78 (0.66-0.93)		0.007
SUSTAIN-6	44/1648 (3%)	46/1649 (3%)		0.98 (0.65-1.48)		0.92
EXSCEL	340/7356 (5%)	383/7396 (5%)	•	0.88 (0.76-1.02)		0.096
Harmony Outcomes	122/4731 (3%)	130/4732 (3%)	•	0.93 (0.73-1.19)		0.58
REWIND	317/4949 (6%)	346/4952 (7%)	•	0.91 (0.78-1.06)		0.18
PIONEER 6	15/1591 (1%)	30/1592 (2%)	•	0.49 (0.27-0.92)		0.021
Overall	1277/27 977 (5%)	1471/28027 (5%)		0.88 (0.81-0.96)	163 (103-489)	0.003
(I ² =13·5%, p=0·327)	12///2/ 3// (3%)	14/1/2002/ (5%)		0.00 (0.01-0.30)	103 (103-409)	0.003

MI: 9% REDUCTION STROKE: 16% REDUCTION

ALL CAUSE MORTALITY: 12% REDUCTION HOSPITALIZATION FOR HF: 9% REDUCTION

	GLP-1 receptor agonist n/N (%)	Placebo n/N (%)		Hazard ratio (95% CI)	NNT (95% CI)	p value
All-cause mortality						
ELIXA	211/3034 (7%)	223/3034 (7%)		0.94 (0.78-1.13)		0.50
LEADER	381/4668 (8%)	447/4672 (10%)	-	0.85 (0.74-0.97)		0.02
SUSTAIN-6	62/1648 (4%)	60/1649 (4%)		1.05 (0.74-1.50)		0.79
EXSCEL	507/7356 (7%)	584/7396 (8%)	-	0.86 (0.77-0.97)		0.016*
Harmony Outcomes	196/4731 (4%)	295/4732 (4%)		0.95 (0.79-1.16)		0.64
REWIND	536/4949 (11%)	592/4952 (12%)	-	0.90 (0.80-1.01)		0.067
PIONEER 6	23/1591 (1%)	45/1592 (3%)		0.51 (0.31-0.84)		0-008
Overall	1916/27977 (7%)	2246/28027 (8%)	.	0.88 (0.83-0.95)	108 (77 to 260)	0.001
(I ² =16·5%, p=0·304)			, <u>, , , , , , , , , , , , , , , , , , </u>			
Hospital admission for h	eart failure					
ELIXA	122/3034 (4%)	127/3034 (4%)	-	0.96 (0.75-1.23)		0.75
LEADER	218/4668 (5%)	248/4672 (5%)		0.87 (0.73-1.05)		0.14
SUSTAIN-6	59/1648 (4%)	54/1649 (3%)		1.11 (0.77-1.61)		0.57
EXSCEL	219/7356 (3%)	231/7396 (3%)		0.94 (0.78-1.13)		0.51
Harmony Outcomes	79/4731 (2%)	111/4732 (2%)	•	0.71 (0.53-0.94)		<0.0001
REWIND	213/4949 (4%)	226/4952 (5%)		0.93 (0.77-1.12)		0.46
PIONEER 6	21/1591 (1%)	24/1592 (2%)	•	0.86 (0.48-1.44)		0.59
Overall	936/27977 (3%)	1016/28027 (4%)		0.91 (0.83-0.99)	312 (165 to 2810)	0.028
			₩	•	•	

GLP-1 Agonists with CV benefits

Liraglutide and Semaglutide for established CVD

Dulaglutide for established CVD and those with CV risk factors

SGLT2 inhibitors with CV benefits

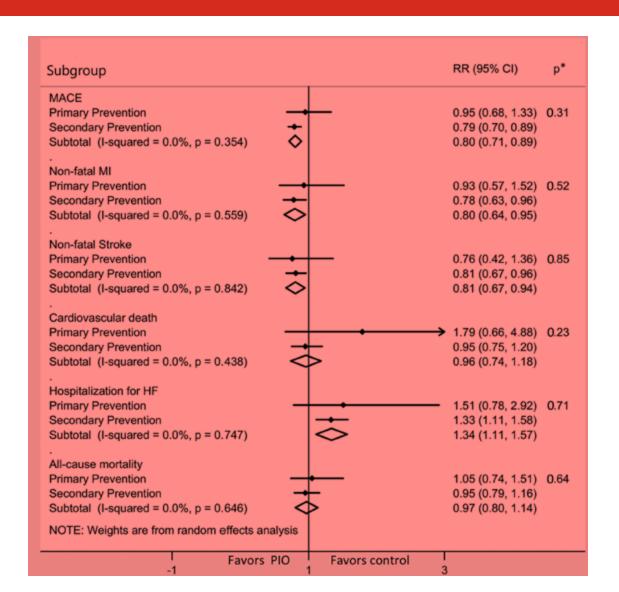
- Empagliflozin for reduction of CV death in established CVD
- Canagliflozin for reduction of CV events in established CVD
- Dapagliflozin for reduction of hospitalization for heart failure in established CVD or multiple risk factors

Cardiovascular Outcome Trials for Thiazolidinediones

Study Identifier	No. of Patients	Study Design	Primary Endpoint	Results HR (95% CI)
PROactive ¹ HbA1c >6.5%	5238	Pioglitazone Placebo	6P-MACE ^a	0.90 (0.80-1.02) p=.095
RECORD ² HbA1c >7.0-9.0%; on Met or SU monotherapy	4447	Met/SU + Rosiglitazone Met + SU	CV hospitalization or CV death	0.99 (0.85-1.16) p=.93
IRIS ³ IR and TIA or stroke	3876	Pioglitazone Placebo	Stroke or MI	0.76 (0.62-0.93) p=.007
TOSCA IT ^{4,5} HbA1c ≥7.0-9.0%	3371	Pioglitazone SU	4P-MACE ^b	2018°

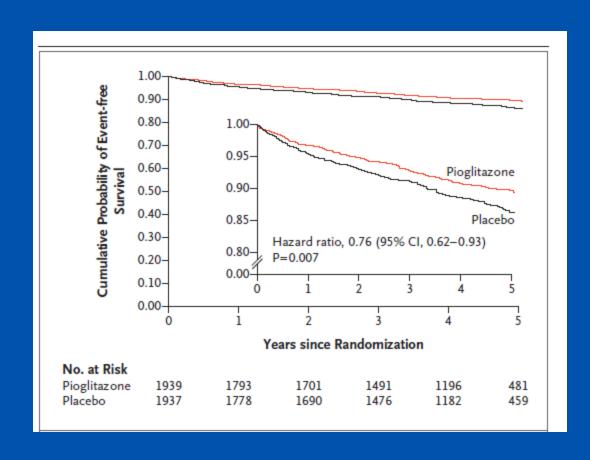
Click on the study title to view additional details regarding each study

- 1. Dormandy JA et al. Lancet 2005;366:1279-89
- 2. Home PD et al. Lancet 2009;373:2125-35
- 3. Kernan WN et al. N Engl J Med 2016;374:1321-31


- 4. Vaccaro O et al. Nutr Metab Cardiovasc Dis 2012;22:997-1006
- 5. https://clinicaltrials.gov/ct2/show/NCT00700856

^aComposite of all-cause mortality, nonfatal myocardial infarction (including silent myocardial infarction), stroke, acute coronary syndrome, endovascular or surgical intervention in the coronary or leg arteries, and amputation above the ankle

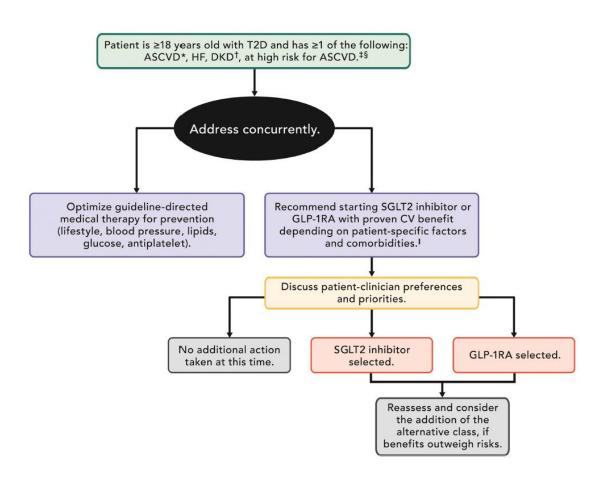
^bComposite of all-cause mortality, nonfatal myocardial infarction, nonfatal stroke, and unplanned coronary revascularization


^cEstimated study completion per clinicaltrials.gov

Pioglitazone – CV benefits in established CVD- 20% reduction in MACE; increase in heart failure

Pioglitazone after Ischemic Stroke or Transient Ischemic Attack

N ENGL J MED 374;14 NEJM.ORG APRIL 7, 2016



Three antihyperglycemic therapies with CV Benefits: GLP-1 agonists, SGLT2 inhibitors, TZDs

CARDIOVASCULAR DISEASE AND RISK MANAGEMENT

Figure 10.3— Approach to risk reduction with SGLT2 inhibitor or GLP-1 receptor agonist therapy in conjunction with other traditional, guideline-based preventive medical therapies for blood pressure, it pids, and Management. dycemia and al'itiplatélét therapy Diabetes Care 2024;47(Suppl. 1):S179-S218

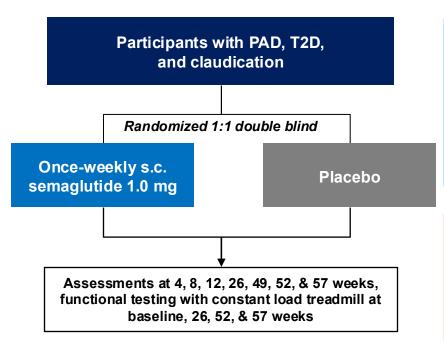
Effect of Semaglutide in symptomatic PAD

Full Results Online Now

THE LANCET

Semaglutide and walking capacity in people with symptomatic peripheral artery disease and type 2 diabetes (STRIDE): a phase 3b, double-blind, randomised, placebocontrolled trial

SCAN ME FOR THE MANUSCRIPT


Marc P Bonaca, Andrei-Mircea Catarig, Kim Houlind, Bernhard Ludvik, Joakim Nordanstig, Chethana Kalmady Ramesh, Neda Rasouli, Harald Sourij, Alex Videmark, Subodh Verma, for the STRIDE Trial Investigators

OBJECTIVES AND TRIAL DESIGN

Objective: To demonstrate the effect of once weekly semaglutide 1.0 mg vs. placebo on functional capacity in people with T2D and symptomatic PAD

Inclusion criteria

- Age ≥18 years old
- T2D diagnosis ≥180 days prior to screening
- HbA_{1c} ≤10%
- Early-stage symptomatic PAD (Fontaine stage IIa)
- PFWD ≥200 m (flat treadmill test)
- MWD ≤600 m (constant load treadmill test)
- ABI ≤0.9 or TBI ≤0.7

Exclusion criteria

- · Conditions other than PAD that limit walking
- Vascular revascularization ≤180 days prior to screening or planned arterial revascularization
- Heart failure (NYHA Class III–IV)
- MI, stroke, hospitalization for unstable angina, or TIA within 180 days prior to screening

ABI, ankle-brachial index; HbA_{1c}, glycated hemoglobin; MI, myocardial infarction; MWD, maximum walking distance; NYHA, New York Heart Association; PAD, peripheral artery disease; PFWD, pain-free walking distance; s.c., subcutaneous; T2D, type 2 diabetes; TBI, toe-brachial index; TIA, transient ischemic attack. Bonaca MP et al. Eur Heart J Cardiovasc Pharmacother 2025;10:728–737.

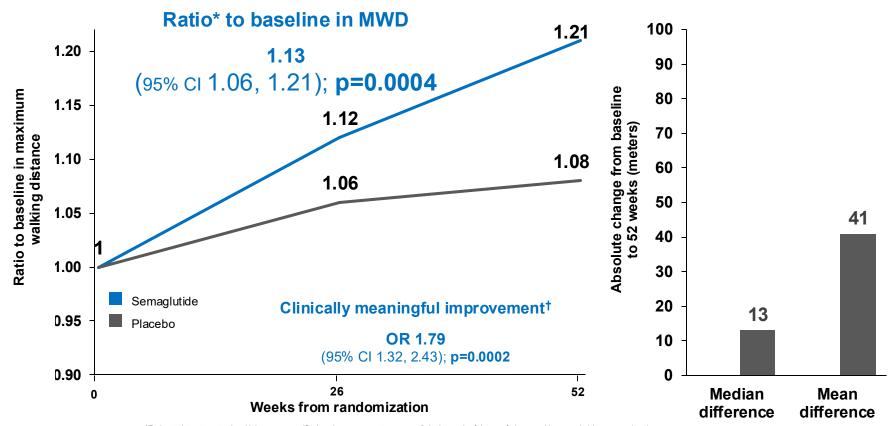
Primary	Change in maximal walking distance (MWD) from baseline to week 52					
	Change in MWD from baseline to week 57					
Confirmator y secondary	Change in VascuQoL-6 from baseline to week 52					
	Change in pain free walking distance (PFWD) from baseline to week 52	Symptoms				
	Change in PFWD from baseline to week 57					
Supportive	Change in HbA _{1c} , body weight*, SBP, blood lipids† from baseline to week 52					
secondary	Change from screening (week –2) to week 52 in ABI	Mechanism				
	Change from baseline to week 52 in SF-36 physical functioning domain	Quality of Life				
Exploratory	Anchor measure to assess clinical meaningfulness of observed change in MWD					
	Clinical outcomes (rescue treatment, major adverse limb events, mortality‡)					

^{*}A post hoc exploratory analyses evaluated correlations between MWD and BMI. †Total cholesterol, low-density lipoprotein-cholesterol, high-density lipoprotein-cholesterol, and triglycerides. ‡Pre-specified data collection with post hoc composite for analysis.

ABI, ankle-brachial index; BMI, body mass index; HbA_{1c}, glycated hemoglobin; MWD, maximum walking distance; PFWD, pain-free walking distance; QoL, quality of life; SBP, systolic blood pressure; SF-36, 36-ltem Short Form Survey; VascuQoL-6, Vascular QoL Questionnaire-6.

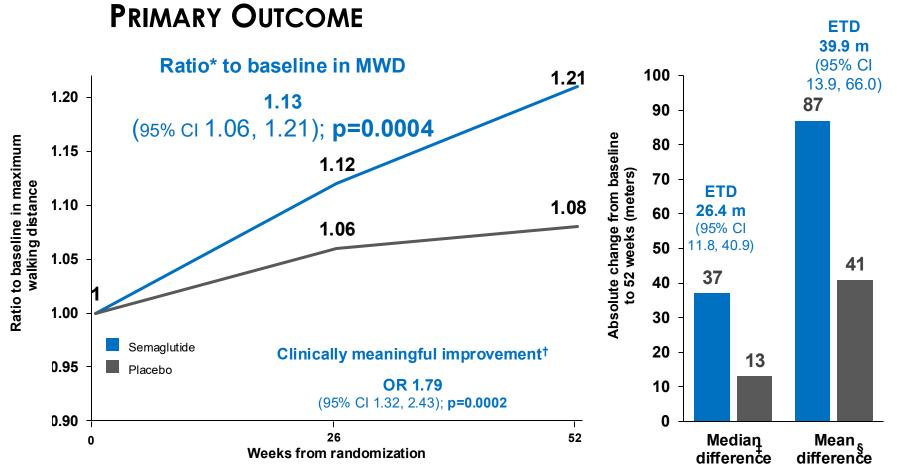
BASELINE CHARACTERISTICS

		Semaglutide 1.0 mg (n=396) %	Placebo (n=396) %
	Age – yr – median	68	68
	Female	27	22
	White	65	70
	Asian	33	28
/a : a. la 4	BMI – kg/m² – median	29	28
eight /	<27	37	35
na a leira ar	Current smoker	24	27
moking	Previous smoker	45	48
	Hypertension	86	90
	Prior myocardial infarction	15	22
	NYHA Class I-II	14	14
	HbA _{1c} – % – median (IQR)	7.0 (6.5–7.8)	7.2 (6.5–8.1)*
	eGFR - mL/min/1.73 m ² - median (IQR)	89.0 (70.0–99.0)	87.0 (67.0-98.5)
	LDL – mg/dL – geometric mean (CV)†	69.2 (0.5)	68.7 (0.5)
	Metformin	80	81
	SGLT2i	37	33
ladical	Insulin	30	34
Medical Therapy	Statins	83	82
	Ezetimibe and/or PCSK9i	16	15
	Aspirin or P2Y ₁₂ inhibitor	73	74
	Direct oral anticoagulants or VKA	13	12
	Cilostazol	11	11


*N=395; †n=381 and n=376 for semaglutide and placebo, respectively. Data shown are percentages unless stated otherwise.

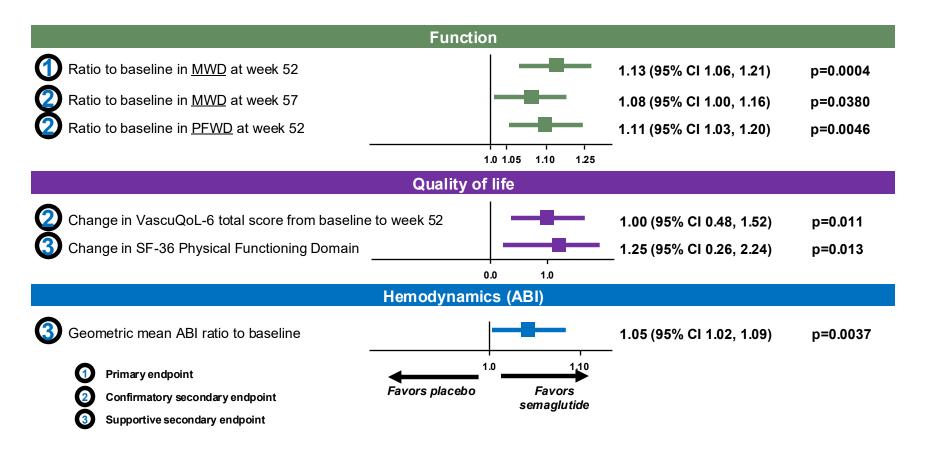
AS CVD, atherosclerotic cardiovascular disease; BMI, body mass index; CV, coefficient of variation; eGFR, estimated glomerular filtration rate; HbA_{1c}, glycated hemoglobin; IQR, interquartile range; LDL, low-density lipoprotein; MI, myocardial infarction; NYHA, New York Heart Association; P2Y₁₂, purinergic receptor P2Y₁₂; PCSK9i, proprotein convertase subtilisin/kexin type 9; SGLT2i, sodium–glucose cotransporter-2 inhibitor; VKA, vitamin K antagonist.

PRIMARY OUTCOME


*Estimated treatment ratio; †Using a prespecified anchor measure to assess clinical meaningfulness of change with semaglutide versus placebo.

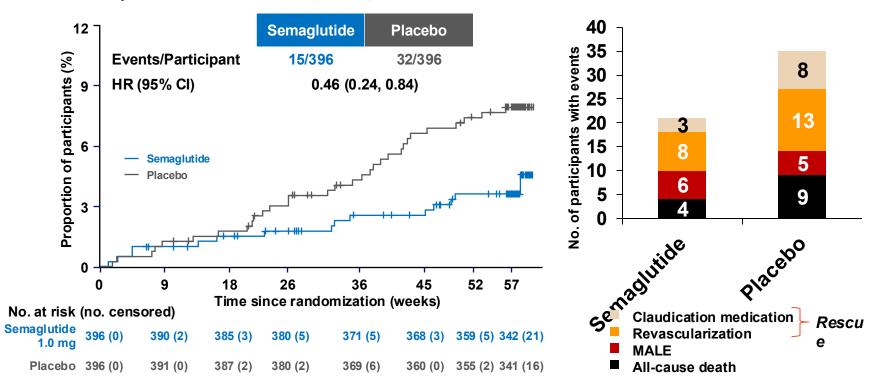
Absolute change from baseline to 52 weeks was an exploratory outcome, based on the in-trial observation period for the median difference estimate, and the on-treatment without rescue (revascularization or medication) observation period for the mean difference.

CI, confidence interval; MWD, maximum walking distance; OR, odds ratio.


^{*}Estimated treatment ratio; †Using a prespecified anchor measure to assess clinical meaningfulness of change with semaglutide versus placebo; †Treatment policy estimand; §Trial product (hypothetical) estimand. Absolute change from baseline to 52 weeks was an exploratory outcome, based on the in-trial observation period for the median difference estimate, and the on-treatment without rescue (revascularization or medication) observation period for the mean difference.

CI, confidence interval; ETD, estimated treatment difference; MWD, maximum walking distance; OR, odds ratio.

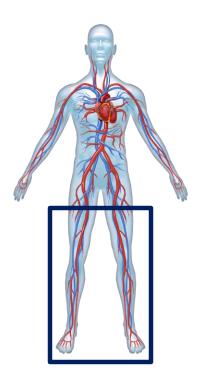
PRIMARY AND SECONDARY OUTCOMES


ABI, ankle-brachial index; CI, confidence interval; MWD, maximum walking distance; PFWD, pain-free walking distance; QoL quality of life; SF-36, 36-Item Short Form Survey; VascuQoL-6, Vascular Quality of Life Questionnaire-6.

EXPLORATORY ANALYSIS OF PROGRESSION OUTCOMES

Composite of rescue initiation, MALE, or all-cause death*

^{*}Pre-specified data collection with a post hoc exploratory analysis evaluating the composite of rescue initiation, MALE, or all-cause death, and the individual components. CI, confidence interval; HR, hazard ratio; MALE, major adverse limb events.



Known benefits of semaglutide¹⁻⁵

- **↓ Weight**
- J HbA_{1c}
- **J** Blood pressure
- **J** Cardiometabolic risk
- ↑ Function & J symptoms in HF
- **J MACE in ASCVD**
- **↓ Kidney complications**

<u>PAD-specific benefits of</u> semaglutide

- √ Improves function
- √ Improves symptoms
- √ Improves hemodynamics (ABI)
- Lower rates of rescue therapy (treatment or revascularization)

Significantly improved function and met criteria for a clinically meaningful change

Significantly improved symptoms and quality of life

Reduced disease progression

Improved ABI

Safety consistent with previous trials with no unexpected safety findings

ABI, ankle-brachial index; ASCVD, atherosclerotic cardiovascular disease; HbA_{1c}, glycated hemoglobin; HF, heart failure; MACE, major adverse cardiovascular events; PAD, peripheral artery disease; T2D, type 2 diabetes.

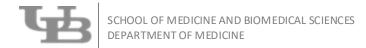
1. Wilding JPH et al. N Engl J Med 2021;384:989–1002; 2. Kosiborod MN et al. N Engl J Med 2023;389:1069–1084; 3. Kosiborod MN et al. Lancet 2024;404:949–961; 4. Lincoff AM et al. N Engl J Med 2023;389:2221–2232; 5. Perkovic V et al. N Engl J Med 2024;391:109–121.

Putative Mechanisms for the CV benefits of GLP-1 agonists

TABLE 9

Hypothesized Mechanisms of GLP-1RA to Lower CV Events

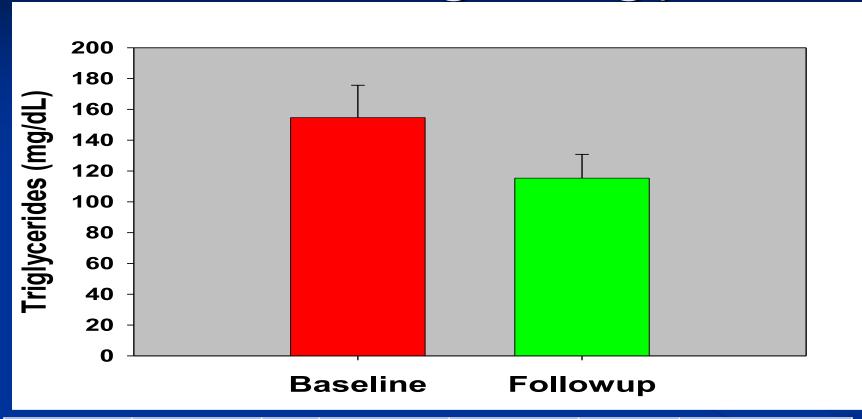
Effect	Consequence				
 Blood pressure reduction 	 Reduced myocardial work, reduced filling pressures, pre-/afterload reduction 				
■ Weight loss	 Improved CV disease risk profile, lower blood pressure 				
 Low-density lipoprotein cholesterol reduction 	■ Reduced atherogenesis				
 Anti-inflammatory action 	 Upregulated nitric oxide and suppressed NF-κB activation 				


CV = cardiovascular; GLP-RA = glucagon-like peptide-1 receptor agonists; $NF-\kappa B = nuclear factor kappa-light-chain-enhancer of activated B cells.$

J Am Coll Cardiol 2018;72:3200-23.

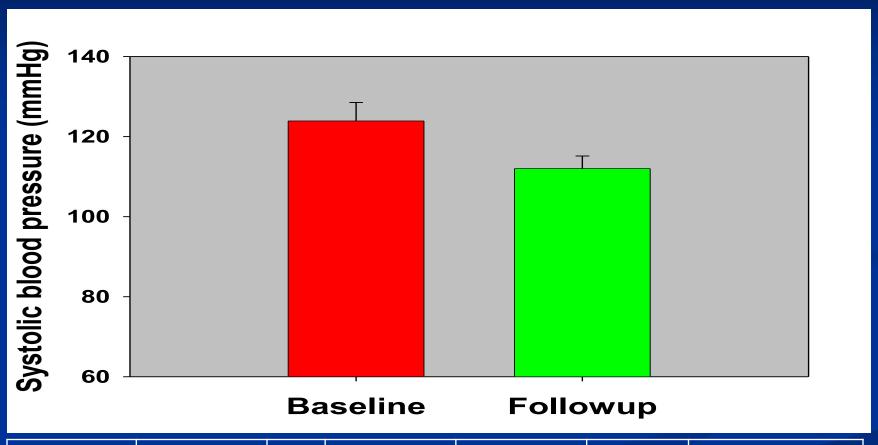
UB Endocrine Department studies

Anti-inflammatory effect of GLP-1 agonists

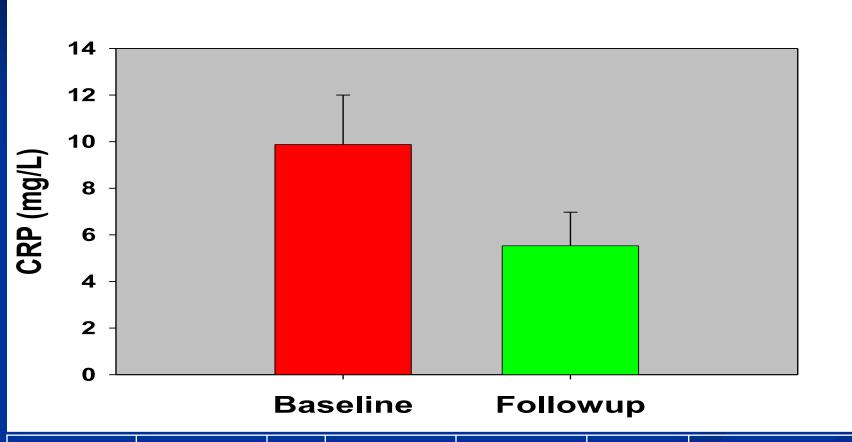


Exenatide Causes Weight Loss And a Reduction in the Insulin Dose Along With an Improvement in HbA1c in Obese Type 2 Diabetics on Insulin

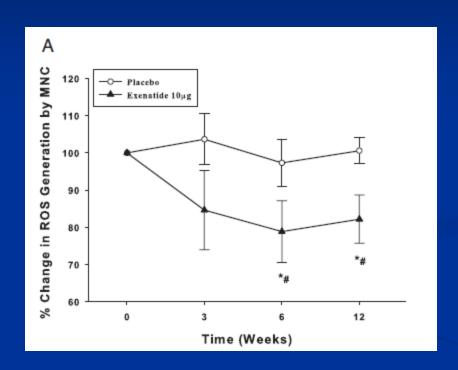
Ruchi Bhatia¹, Prabhakar Viswanathan, PhD¹, Ajay Chaudhuri, MD¹, Priya Mohanty, MD¹, Vishal Bhatia, MD¹ and Paresh Dandona, MD¹.

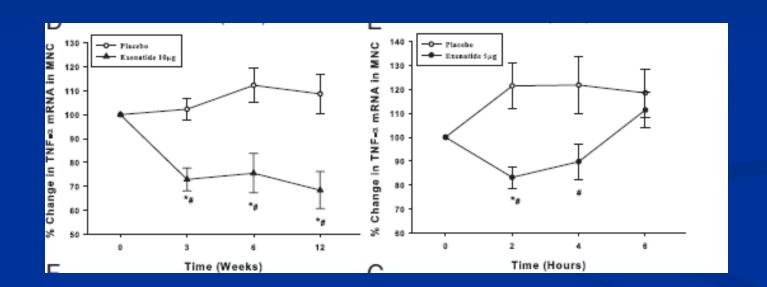

SUNY at Buffalo, Endocrinology Division, Kaleida Health, Buffalo, NY, United States.

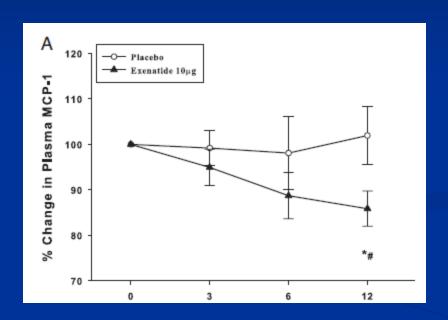
Exenatide: Change in triglycerides

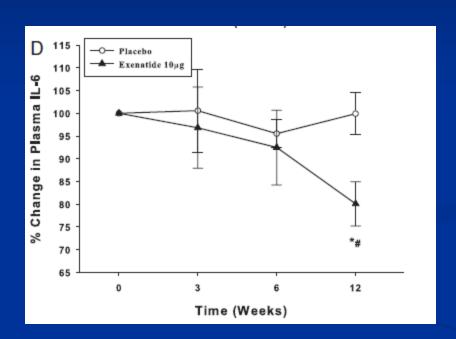

VISIT	WEEKS (MEAN)	N	MEAN (mg/dL)	STD DEV	SEM	P VALUE
Baseline		42	154.68	139.09	20.97	
Follow-up	26 ± 2	42	115.33	100.02	15.43	0.02

Exenatide: Change in systolic blood pressure

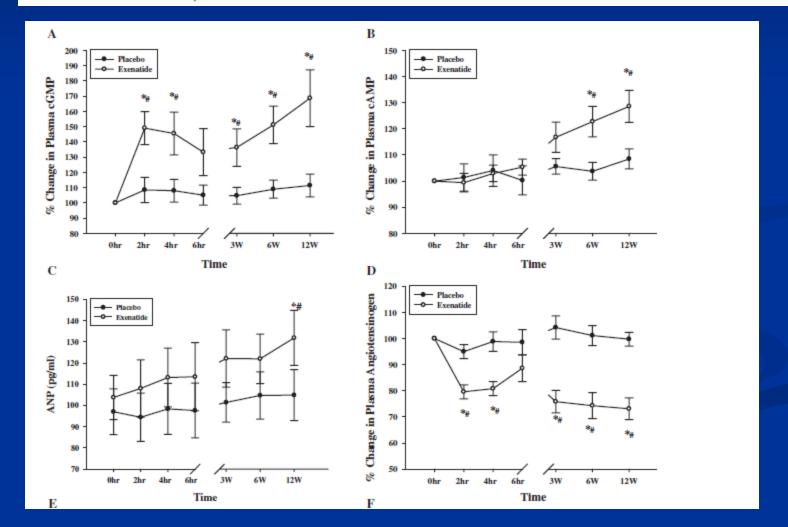



VISIT	WEEKS (MEAN)	N	MEAN (mm Hg)	STD DEV	SEM	P VALUE
Baseline		39	123.89	28.19	4.63	
Follow-up	18.16	39	112.00	19.07	3.14	P = 0.003


Exenatide: Change in C-Reactive Protein (CRP)

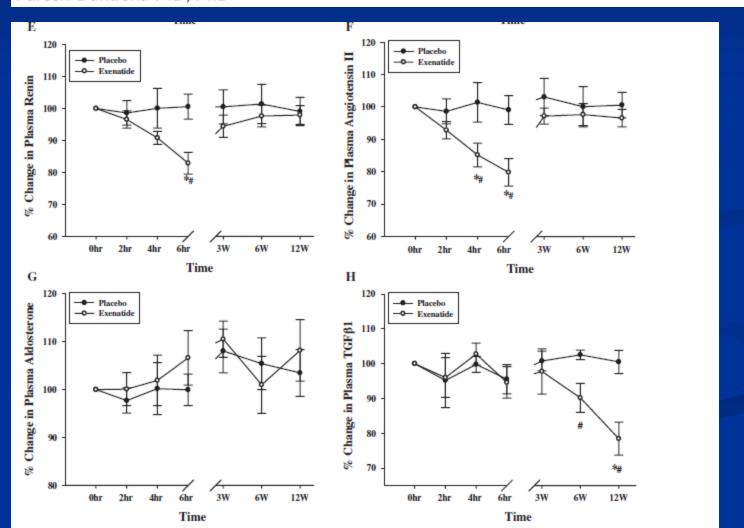


VISIT	WEEKS (MEAN)	N	MEAN (mg/L)	STD DEV	SEM	P VALUE
Baseline		29	9.88	11.42	2.12	
Follow-up	26 ± 2	29	5.53	7.77	1.44	P = 0.002



Exenatide induces an increase in vasodilatory and a decrease in vasoconstrictive mediators

Ajay Chaudhuri MD[†] | Husam Ghanim PhD[†] | Antoine Makdissi MD | Kelly Green BS |
Sanaa Abuaysheh BS | Manav Batra MD | Nitesh D. Kuhadiya MD |
Paresh Dandona MD, PhD


Diabetes Obes Metab. 2017;19:729-733.

Exenatide induces an increase in vasodilatory and a decrease in vasoconstrictive mediators

Ajay Chaudhuri MD[†] | Husam Ghanim PhD[†] | Antoine Makdissi MD | Kelly Green BS |
Sanaa Abuaysheh BS | Manav Batra MD | Nitesh D. Kuhadiya MD |
Paresh Dandona MD, PhD

Diabetes Obes Metab. 2017;19:729-733.

CONCLUSION

- PAD is preventable in subjects with diabetes mellitus
- ABC of diabetes care is beneficial in the primary and secondary prevention of PAD in diabetes
- GLP-1 agonists, SGLT2 inhibitors and TZDs provide CV benefits independent of glycemic control in subjects with Diabetes and ASCVD
- Guideline based therapy can prevent and reduce the risk of MALE in subkects with diabetes and PAD